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A reversible adsorption-desorption parking process in one dimension is studied. An exact solution 
for the equilibrium properties is obtained. The coverage near saturation depends logarithmically on 
the ratio between the adsorption rate, k, , and the desorption rate, k- , p@l- l/log(k+lk-), when 
k+lk- % 1. A time dependent version of the reversible problem with immediate adsorption (k, = ~0) 
is also considered. Both heuristic arguments and numerical simulations reveal a logarithmically 
slow approach to the completely covered state, 1 - p(r) - l/log(t) . 

I. INTRODUCTION 

The adsorption of large particles such as colloids, pro- 
teins, latex spheres, etc., on solid substrates is typically an 
irreversible process. ‘*2 Indeed, in a number of situations, the 
energetic barriers for desorption are much higher than the 
corresponding barriers for adsorption. Moreover, particles 
cannot adsorb on top of previously adsorbed ones. This leads 
to the nonoverlapping irreversible random sequential adsorp- 
tion (RSA) models which have been studied intensively. It 
was found that in arbitrary dimension, RSA processes reach 
a jamming configuration, where further adsorption events are 
not possible. The final coverage as well as the temporal ap- 
proach to the jammed state are of interest.2-8 Exact analyti- 
cal results have been obtained mainly in one dimension, 
where the problem is also known as the “parking” 
problem.27778 

It is clear that the usual RSA model provides an over- 
simplified description of actual adsorption processes. A more 
realistic treatment should incorporate various effects such as 
the transport properties of the particles, the interaction be- 
tween particles, and possible desorption from the substrate to 
the bulk.9-‘3 Very recently, RSA models where particles dif- 
fuse in the bulk and adsorb on the substrate were considered. 
Interestingly, introduction of bulk transport did not change 
the coverage and the structure of the jammed configuration. 
However, it was found that the approach to the jamming 
limit depends on the transport properties of the particles.9”0 

In this paper, we study the influence of desorption on the 
one-dimensional parking problem. Such a generalization is 
appropriate for many physical, chemical, and biological 
systems.‘-l7 Allowing desorption makes the process mani- 
festly reversible and the system ultimately reaches an equi- 
librium state. In the experimentally relevant desorption- 
controlled limit, the system approaches the saturated state in 
a nontrivial manner. 

The rest of this paper is organized as follows. In Sec. II, 
we introduce the model, write the governing rate equations 
for the density of empty intervals, and then find the exact 
steady state solution to these equations. The primary result of 
this section is the weak logarithmic dependence of the equi- 
librium coverage on the ratio of the adsorption rate to the 
desorption rate, in the desorption-controlled regime. In Sec. 
III, we describe the temporal behavior of the system near 
saturation in the desorption-controlled limit. To study the 

evolution in this limit, we focus on a model with an infinite 
rate of adsorption and a finite rate of desorption. A heuristic 
argument as well as numerical simulations show that the 
coverage slowly approaches saturation, 1 - p(r) - l/log(t) . 
Finally in Sec. IV, we discuss our findings and further out- 
look. 

II. THE REVERSIBLE PARKING PROBLEM 

In the irreversible parking problem, identical particles 
park on a line with an adsorption rate k+ . Particles attempt 
to park with an equal rate everywhere and a parking attempt 
fails if the space is partially occupied by a previously ad- 
sorbed particle, as shown in Fig. 1. We are interested in the 
more general situation where particles are also allowed to 
desorb with a desorption rate k- . Particles desorb regardless 
of their local environment. This system ultimately reaches an 
equilibrium state independent of the initial conditions. The 
primary aim of this study is to describe this final state and 
the asymptotic approach towards it. To this end we will apply 
the empty interval distribution method.14 This technique is 
often applied to RSA problems, since simple and closed 
equations emerge. We generalize these equations to describe 
the reversible case and solve the static equations. 

Denote the density of empty intervals of size exactly 
equal to x at time t by P(x,t). Each empty interval borders a 
particle to its left and to its right. Since in the adsorption- 
desorption process one interval corresponds to one particle 
and since the total density of particles and intervals is equal 
to unity one has 

1= 
I 

L(x+ l)P(x,t). (1) 
0 

Without loss of generality the size of particles is taken as the 
unit of length. Moreover, from the same one-to-one mapping 
between particles and intervals, the density of particles can 
be obtained from the distribution function of empty intervals 
as 

p(t)= 
I 

mdx P(x,t). 
0 

(2) 

To write the evolution equations one has to account for 
all possible processes leading to a change of P(x,t). For 
x< 1, an interval disappears when either one of its neighbor- 
ing particles desorbs. On the other hand, an interval of size x 
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FIG. 1. Illustration of the adsorption-desorption process. The displayed 
adsorption attempt is forbidden. 

is created when a particle parks at one of two specific loca- 
tions on an interval of size y with y>x+ 1. These two pro- 
cesses give rise to the following integro-differential equation 
for P(x,t) 

azw,t) 
s 

cc 
- =-2k_P(x,t)+2k+ 

at dY P(YJ), x<l. (3a) 
x+1 

Due to adsorption, intervals with length larger than a particle 
size are destroyed with a rate k, (x - 1). In addition, two 
neighboring intervals can create a larger interval when the 
intervening particle desorbs. However, the mere knowledge 
of the interval distribution function is not sufficient for writ- 
ing the rate equations. We introduce the interval-interval 
distribution function P(y,z,t), defined as the density of pairs 
of neighboring intervals of length y and z, which are sepa- 
rated by a single particle. We further assume that this 
interval-interval distribution function is proportional to the 
product of single interval densities. This assumption, also 
known as the independent principle, has proved to be exact 
in a number of RSA problems.‘8V19 In equilibrium at least, 
one expects such a relation to be exact and it is a natural 
starting point for investigating the time dependent problem. 
With this assumption, one finds for the rate equation for 
x>l 

apw) 

I 

m 

~ = -2k_P(x,t)+2k+ 
at dy P(YJ) 

x+1 

dy P(y,tPb- 1 -YJ) 

-k+(x- l)P(x,r), x> 1. W-4 

The convolution term involves the probability of finding a y 
interval, P(y,t), and the normalized probability for its neigh- 
bor to be of size x- 1 -y, i.e., P(x- 1 -y)lJrdx P(x,t). 

To verify that these equations satisfy the normalization 
condition of Eq. (I), one can check by direct integration of 
Eq. (3) that dldf.fFdx(x+ l)P(x,t)=O. Another useful 
check of self-consistency of the rate equations is provided by 
integration of the rate equations over all lengths. This gives 
the equation describing the change of the density, 
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muir mean-field equation, dpldt = - k-p + k + ( 1 - p), which 
is recovered by setting the integral on the right-hand side 
equal to 1 -p(f). 

The steady-state interval distribution has to satisfy the 
static version of Eq. (3), that is, both sides of the equation 
vanish. Interestingly, the simplest attempt, trying the Poisso- 
nian distribution P,,(x) =/3 exp( - ax), is successful. We 
emphasize that despite the two different equations for x< 1 
and x> 1, the solution is smooth at x = 1. From the normal- 
ization condition of Eq. (1) the prefactor is determined to be 
/?=&(l+ ) h’l f a, w I e rom Eq. (3) the value of (Y is found via 
a transcendental equation involving k+lk- . One can now 
write the exact steady-state solution as 

a2 
P,(x)== exp( - (ux) with cy exp(cu)= k+lk- . (5) 

To obtain the density of particles in the steady state we use 
the correspondence between particles and intervals expressed 
in Eq. (2). Hence, it is easily found that peg=d(l +a). In the 
desorption-controlled regime, k + I k _ + 1, one finds 
a=log( k +lk-), and consequently, 

(6) 

Notice that in the limiting case k+lk - --m the line is 
completely filled with particles at the steady state, in contrast 
to the case of no desorption where asymptotic coverage is 
Pjam~0.7475.7’8 However, as the adsorption rate increases 
while the desorption rate is kept fixed, the coverage increases 
very weakly, since the corresponding correction is logarith- 
mic. Moreover, the gap distribution is regular at the origin, 
contrary to the logarithmic divergence occurring in the irre- 
versible case. Thus, the presence of desorption, even if 
slight, significantly changes the long-time behavior. Note 
also that in the adsorption-limited case, the coverage displays 
an obvious linear dependence on the rate ratio, 
pq=a=k+lk-. This steady state corresponds to a system of 
hard rods in equilibrium.20 

To test the theoretical predictions we performed Monte 
Carlo simulations of the reversible parking process. We have 
found that the equilibrium properties are essentially identical 
to the analytical results shown in Fig. 2. We also confirmed 
the Poissonian nature of the density of empty intervals. Fur- 

1.0 

dp(r) 

I 

m 

- =-k-p(t)+k+ dt dx(x- l)P(x,r), 
1 

which can also be derived directly from the definition of the 
gap distribution. Equation (4) is a generalization of the Lang- 

FIG. 2. The exact steady state coverage for the reversible parking problem. 
p,(k+/k-) is plotted vs k-/k+ for k+>k- (solid line) and vs k+lk.. for 
k - > k + (dotted line). 
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thermore, the relaxation to the steady state have been inves- 
tigated. As expected, the approach to the steady state cover- 
age is exponential P,-~(t)mexp( - t/r), where the 
relaxation time r appears to be proportional to k+lk- with 
possible logarithmic corrections. Note that the corresponding 
approach to the jammed state in the irreversible case has a 
power-law dependence on time pj,-p(t>“t-‘. The distri- 
bution function P(x,t) exhibits a transient discontinuous de- 
rivative at x = 1 due to the discontinuous structure of Eq. (3). 
That feature does not permit us to construct an analytic so- 
lution for the time dependent problem. 

We now outline the solution for the lattice version”‘t6 of 
the reversible parking problem. In this model, objects occupy 
r lattice sites and will be referred to as r-mers. Analogous to 
the continuous case, r-mers land uniformly on a lattice with 
a rate k+ and adsorb if all sites are empty. We define P(m,t) 
as the density of empty intervals of exact length m. The 
equivalent to Eqs. (l)-(3) simply follows and we merely 
quote the final results. The density of empty intervals is 
again Poissonian 

A’ k- 
P,(m)= 

(l-A)2 
X+rtl-X) Am with - =-. 1-X k+ (7) 

Using the equivalent of Eq. (2) p,=rCrP,(m), we can 
find the steady state coverage pes=l( 1 - h)/[X + r( 1 -X)]. 
In the desorption-controlled case, k+lk-9 1, we find that 
peg= 1 - (k-lk+)“‘lr. As the size of the r-mer increases, the 
exponent of the power-law r- ’ decreases and ultimately the 
aforementioned logarithmic nature is reached. Indeed, the so- 
lution to the continuous case given by Eqs. (5) and (6) can be 
found from Eq. (7) by taking the proper limits x--+mlr and 
k++k+lr. 

111. DYNAMICS IN THE DESORPTION-CONTROLLED ~~&%(~)I 
LIMIT 1 --p(t)= log(t) . 

The second part of our study focuses on the dynamical 
properties of the system in the desorption-controlled limit. To 
attain this regime, immediate adsorption (k, = a) is imposed 
while the desorption rate is kept finite. Redefining the time 
t--t k- t, corresponds to taking the desorption rate equal to 
unity. The evolution may be divided into two stages. First, 
the system instantaneously reaches a jammed state and then 
desorption comes into play. Since both the final coverage and 
the asymptotic behavior do not depend on the initial condi- 
tions produced at the end of first stage, one can use any 
initially jammed configuration satisfying the normalization 
constraint of Eq. (1). In the simulations, we have chosen a 
distribution where all gaps between particles are equal to x0 
with xa< 1, 

We describe now a simpler heuristic argument that also 
predicts inverse logarithmic behavior but without double 
logarithmic correction. We observe that when the system ap- 
proaches to the completely covered state the time interval 
between successive density-increasing adsorption events in- 
creases. Hence, the system has time to “equilibrate” and one 
can approximate the gap distribution by the Poissonian equi- 
librium distribution P(x,t) = a2 exp( - ax>l( 1 + a). To 
solve for the density we write Eq. (4) with a vanishing de- 
sorption term 

dp(t) m - = 
I dt 1 dx(x- l)P(x,r)=& exp( - a). (11) 

&-x0) 
P(x,t=O)= l+x . (8) 

0 

Once a desorption event has occurred, either one or two 
adsorption events are possible depending on the length of the 
two intervals bordering the particle. We have adopted a natu- 
ral scheme where the first particle lands on a randomly 
picked segment in the open interval and then, if feasible, the 
second particle lands randomly on the remaining interval. 

On the other hand, one has p(t) = a/( 1 + cr) from Eq. 
(2) and consequently, the time derivative of the density can 
be expressed as dp(t)ldt= (daldt)l( I+ a)*. By equating 
the two expressions obtained for dp(t)ldt we have 

da 
dt =(l+cY)exp(-a). 

Solving this differential equation we arrive at the asymptotic 
behavior of the density, that is, crElog(t) and 

c 
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Thus, after each desorption and subsequent adsorption 
event(s) the number of particles is either left unchanged or 
increased by one. Numerical simulations indicate that this 
process approaches complete coverage in the long-time limit. 

A simple heuristic argument explains the behavior of the 
system near saturation. Let us imagine that a segment of 
length L = N + 2 is occupied by N particles. Consider a typi- 
cal situation where the gaps between the particles are com- 
parable ( - 1 IN). A successful density-increasing adsorption 
event may take place only as a result of a number of ordered 
cooperative desorption-adsorption events. First, the leftmost 
particle has to desorb and then adsorb near the left end of the 
segment. Second, the next leftmost particle has to desorb and 
then adsorb near the right-hand side of the previous particle 
etc. Finally, a gap larger than the unit length is cleared at the 
right edge of the segment, and an additional particle success- 
fully adsorbs. The probability for the first event is R/N since 
the leftmost particle is desorbed first among N particles; the 
probability for the second event is RI(N- 1 ), etc. The factor 
R-C 1 accounts for the probability that the corresponding ad- 
sorption event happens in the proper location. The total prob- 
ability for the cooperative event can be written as p-RN/N!. 
We can now evaluate the time dependence of N(t) . The time 
required for a unit change in N is inversely proportional to p 
and one has 

dN AN /eRIN 
---K-ocpcc - . 
dt At \ 1 N (9) 

In the last step the Stirling’s formula N! -(N/e)N was used. 
Solving Eq. (9) yields the following asymptotic relation for 
N(t), N-log( t)/log[log( t)]. Since the uncovered fraction 
obeys I - p(t) K 1 lN, an unexpectedly slow long-time behav- 
ior of the density emerges, 

(10) 
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FIG. 3. Monte Carlo simulation results for the infinite adsorption case. The 
simulation was performed on a ring of length 100000. (a) The temporal 
approach to the fully occupied state. Shown are f(r), f(t) = [ I- p(t)] log( 1) 
vs t (circles) and f(r)/log[log(t)] vs f (squares). (b) The gap distribution at 
the 65 536 time step. 

Both estimates predict that the desorption-limited pro- 
cess gives rise to a very slow inverse logarithmic approach to 
the completely covered state. Thus we conclude that in the 
desorption-controlled limit the dynamics of the system ex- 
hibits “glassy” relaxation. 

(13) 

Numerical simulations of the desorption-limited process 
were performed using the following simple procedure. A list 
of intervals {lie 1) is kept, while the locations of the par- 
ticles are ignored. A simulation step consists of choosing 
randomly a pair of neighboring intervals, {Zj ,li+ i}. Then the 
total length 1_1+ Ii+ * 
vals, I;. and li+ 1. 

is redivided randomly to two new inter- 
If one of these new intervals is larger than 

unity, an additional particle adsorbs. Given Zi> 1, two new 
intervals are created randomly with their total length equal to 
Zi - 1. Time is updated after each event by the inverse of the 
total number of intervals in the system. To verify the pre- 
dicted logarithmic approach to the saturated state, we write 
f(t) = [ 1 - p(t)]log(t). The simulation results for f(t) and 
f(t)/log[log(t)] are shown in Fig. 3(a). Both functions are 
slowly varying in time. Since the former is an increasing 
function and the latter a decreasing one, we conclude that the 
estimates (10) and (13) provide the upper and lower bounds 
for the uncovered fraction, respectively. It seems that the 
upper bound provides a slightly better approximation for 
f(t)- 

Similar to the general reversible case, the gap distribu- 
tion is an important characteristic of the process. Rather 
cumbersome rate equations describe the time evolution of 
P(x,t) in this case. We do not write these rate equations 

R L. Krapivsky and E. Ben-Naim: Adsorption-desorption processes 6781 

since we have not been able to obtain meaningful new results 
by analytical means. Instead, in Fig. 3(b) we present Monte 
Carlo simulational results for the gap distribution function. 
In the long-time limit, the gap distribution function appears 
to be again Poissonian, at least over a significant range of the 
gap size. We believe that this supports the argument leading 
to the lower bound (13). However, the tail of the distribution, 
crucial for the adsorption of new particles, cannot be deter- 
mined from these data. 

The success of the Poissonian approximation suggests 
that the process is mean field in nature. To check this feature, 
a mean-field variant of the above Monte Carlo simulation 
was also considered. In this model, the two randomly chosen 
intervals are not required to be neighbors. In fact, the pair is 
chosen randomly from all available pairs. Simulations have 
shown little quantitative change and practically no qualita- 
tive change in the data similar to those presented on Fig. 3. 
We performed other numerical experiments including, e.g., 
computation of the pair correlation function. Again, simula- 
tional results revealed an excellent agreement between the 
one-dimensional and the mean-field versions. 

IV. DISCUSSION 

We have considered near saturation properties of two 
one-dimensional adsorption-desorption processes. In the re- 
versible case, we have obtained an exact solution that exhib- 
its a slowly varying dependence of the coverage versus the 
rate ratio k+lk- , when k + >> k- . In the case of immediate 
adsorption, when the system approaches to the completely 
covered state, we have shown that 1 -p(t) -l/log(t). We 
have performed numerical simulations both for the one- 
dimensional model and for the mean-field version of the 
model. Comparison of numerical results have revealed a re- 
markably good agreement between both models. Despite the 
apparent difference in the definition of the reversible model 
and the desorption-controlled model the underlying physical 
mechanism for increase in coverage is similar. In a configu- 
ration where the coverage is large, pS 1, a growing number 
of cooperative desorption-adsorption events are necessary 
for an additional adsorption to occur. Moreover, the slow 
nature of the process allows for perfect mixing of different 
gaps and hence leads to a Poissonian distribution of gaps. 

The situation found in this adsorption-desorption pro- 
cess is reminiscent of that encountered in a number of one- 
dimensional systems where phase transitions occur at zero 
temperature. Indeed, noting that in the parking problem the 
rate ratio k+lk- plays the role of temperature we conclude 
that all basic features of the reversible model such as disor- 
dered steady state and exponential approach towards equilib- 
rium correspond to typical behaviors above the point of 
phase transition. In the desorption-controlled case, the sys- 
tem reaches the perfectly ordered final state while the ap- 
proach towards it shows a critical slowing down. Further- 
more, this analogy suggests that in the two-dimensional case 
a phase transition in the adsorption-desorption system may 
take place at a finite k+lk- . The desorption-controlled limit 
in two dimensions seems very interesting since the system 
can reach numerous metastable states which include, e.g., 
two ordered perfect crystal structures, triangular and square, 

J. Chem. Phys., Vol. 100, No. 9, 1 May 1994 



6782 P. L. Krapivsky and E. Ben-Naim: Adsorption-desorption process& 

and a number of polycrystalline structures with a network of 
defects. Metastable states should be responsible for rema- 
nance effects, slow relaxation, and sensitivity to initial con- 
ditions. Elucidating properties of these metastable states and 
their basins of attraction, glassy phase transitions, etc., is left 
for future studies. 

ACKNOWLEDGMENTS 

After completing this article we became aware of similar 
results, derived by independent means, for the dynamics in 
the desorption-controlled limit.21 We thank J. Talbot for let- 
ting us know of his work and for a useful correspondence. 
We are also thankful to D. ben-Avraham for pointing out 
some relevant references and especially to S. Redner for nu- 
merous discussions and for reading the manuscript. We 
gratefully acknowledge AR0 Grant No. DAAHO4-93-G- 
0021, NSF Grant No. DMR-9219845, and to the Donors of 
The Petroleum Research Fund, administered by the Ameri- 
can Chemical Society, for partial support of this research. 

‘G. Y. Onoda and E. G. Liniger, Phys. Rev. A 33, 715 (1986). 
‘For a comprehensive review see J. W. Evans, Rev. Mod. Phys. 65, 1281 

(1993). 

‘J. Feder, J. Theor. Biol. 87, 237 (1980). 
4Y. Pomeau, J. Phys. A 13, L193 (1980). 
‘R. H. Swedsen, Phys. Rev. A 24, 504 (1981). 
6E. L. Hinrichsen, J. Feder, and T. Jossang, J. Stat. Phys. 44, 793 (1986). 
7A. Renyi, Publ. Math. Inst. Hung. Acad. Sci. 3, 109 (1958). 
*J. J. Gonzalez, P. C. Hemmer, and J. S. Hoye, Chem. Phys. 3,228 (1974). 
9P. Schaaf, A. Johner, and J. Talbot, Phys. Rev. Lett. 66, 1603 (1991); B. 

Senger, J.-C. Voegel, P Schaaf, A. Johner, A. Schmitt, and J. Talbot, Phys. 
Rev. A 44, 6926 (1991). 

“G. Tarjus and P. Viot, Phys. Rev. Lett. 68, 2354 (1992). 
” P Nielaba and V. Privman, Mod. Phys. Lett. B 9, 533 (1992); V. Privman 

and M. Barma, J. Chem. Phys. 97, 6714 (1992). 
‘*G. Tatjus, P. Schaaf, and J. Talbot, J. Chem. Phys. 93.8352 (1990). 
13R B. Stinchcombe, M. D. Grynberg, and M. Barma, Phys. Rev. E 47, 

4018 (1993). 
14E. R. Cohen and H. Reiss, J. Chem. Phys. 38, 680 (1963). 
‘s A. S. Zasedamlev, G. V. Gurskii, and M. V. Volkenshtein, Mol. Biol. 5, 

245 (1971). 
I6 J. D. McGhee and P H. von Hippel, J. Mol. Biol. 86, 469 (1974). 
“T. L. Hill, Cooperutivity 7leot-y in Biochemistry (Springer, New York, 

1985). 
‘*J. J. Gonzalez and P C. Hemmer, J. Chem. Phys. 67.2469, 2509 (1977). 
19J. W. Evans, D. K. Hoffmann, and D. R. Burgess, J. Chem. Phys. 80,936 

(1984). 
*‘L. Tonks, Phys. Rev. 50, 955 (1936). 
*’ X. Jin, G. Tarjus, and J. Talbot (unpublished). 

J. Chem. Phys., Vol. 100, No. 9, 1 May 1994 


